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Abstract Ion transport problem related to controlled potential experiments in elec-
trochemistry is studied. The problem is assumed to be superposition of diffusion
and migration under the influence of an electric field. The comparative analysis are
presented for three well-known models—pure diffusive (Cottrell’s), linear diffusion-
migration, and nonlinear diffusion-migration (Cohn’s) models. The nonlinear model
is derived by the identification problem for a nonlinear parabolic equation with non-
local additional condition. This problem reduced to an initial-boundary value problem
for nonlinear parabolic equation. The nonlinear finite difference approximation of this
problem, with an appropriate iteration algorithm is derived. The comparative numer-
ical analysis for all three models shows an influence of the nonlinear migration term,
the valences of oxidized and reduced oxidized species, also diffusivity to the value
of the total charge. The obtained results permits one to estimate bounds of linear and
nonlinear ion transport models.

Keywords Ion transport · Cottrell’s model · Cohn’s model · Nonlinear parabolic
problem · Current response · Iteration scheme

1 Introduction

In recent years there has been growth of interest in mathematical and computational
modeling of electroanalytical experiments related to ion transport (see, [1–10] and
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references therein). Linear mathematical models of such problems in electrochem-
istry, in general, and in chronoamperometry, in particular, are usually based on the
Nernst–Planck equation [3]. Analytical solutions of these simplest models permit
one to understand experiment, and to find out some relationships, which can not
be estimated experimentally. In chronoamperometry such a classical result has first
been obtained by Cottrell [4]. In 1902 Cottrell derived a linear initial-boundary value
problem (IBVP) and demonstrated that, if an extreme potential is suddenly applied
to an electrode in contact with a solution containing a uniform concentration of an
electroreactant, then the resulting current response IC , defined to be as Cottrellian, is
proportional to 1/

√
t . Subsequently this result has also been confirmed experimentally

and theoretically. This relationship assumes that the ion transport is purely diffusive,
planar and semi-infinite. Deviations from the ideal Cottrellian response provide infor-
mation about complex chemical kinetics and kinetics of electron transfer. Further
various modifications of the relationship IC ∼ 1/

√
t were investigated based on lin-

ear mathematical models. Thus, the transport response of electrodes under conditions
of diffusion and migration was studied by Lange and Doblhofer [5]. They used the
Nernst–Planck equation to derive a linear model for the transport of the electroactive
species with zero initial condition. The problem then was solved by digital simulation
techniques. For equal diffusion coefficients of all ions a linear model with an analytical
formula and some numerical results have been obtained by Myland and Oldham [6].
Here the effect of migration factor to the limiting Cottrell currents was also studied. For
the case of unequal diffusion coefficients this linear model was developed by Bieniasz
[7]. Here the effects of the diffusivity ratio DR/DC , as well as of the electroactive and
counter-ions on the limiting chronoamperometric currents were examined. Analytical
formulas of the current response, and comparative analysis for linear models in chro-
noamperometry under conditions of diffusion and migration, were given by Hasanov
and Hasanoglu [8,9].

The mathematical model of mass and charge transport in a controlled potential
experiment is derived by Cohn et al. [10]. Due to lack of electrochemical information,
this model is restricted to the two-species (oxidized and reduced) case. However, even
in this simplest, from the point of view physico-chemical model, case the obtained
mathematical problem is highly complicated, as we will see below.

In the case of two-species migrating under the influence of the electric field, the
scaled mathematical model with respect to the concentration u(x, t) of the reduced
species leads to the following identification problem for the nonlinear parabolic equa-
tion with the unknown coefficient q(t) [10]:

⎧
⎨

⎩

ut = (g(u)ux )x + q ′(t)h(u)x , x > 0, t > 0,

u(x, 0) = 0, x > 0,

u(0, t) = 1, t > 0,

(1)

and with the additional nonlocal condition
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q(t) =
∫ ∞

0
u(x, t)dx, t ≥ 0. (2)

The coefficients g(u) > 0 and h(u) express an influence of the diffusion and migration
in the ion transport and have the forms:

g(u) := zo + (zr − zo)u

zo + (zrκ − zo)u
, h(u) := κu

zo + (zrκ − zo)u
. (3)

Here zr and zo is the valences of the reduced and oxidized species, which are assumed
to be integers of the same sign. The dimensionless parameter κ := Dr/Do is the
diffusivity ratio.

Problem (1)–(2) can be regarded as a nonlocal identification problem with respect
to the unknown coefficient q(t), which represents the scaled total charge

q(t) = zr

nF Seu0
Q(t). (4)

Here n is the number of electrons gained by an ion upon reduction, F is Faraday’s
constant, Se is the area surface of the electrode, and u0 is the concentration at x = 0
of the reduced species at the electrode. The total charge carried by the reduced species
is defined to be

Q(t) =
∫ t

0
I(τ )dτ,

where I(t) is the current response. Exchange of electrons between the surface of the
electrode and electroactive species in the time t > 0 gives rise to the current response
I = I(t), which is related to the concentration of reduced species by the balance
equation [3]

u0

zr

∫ ∞

0
u(x, t)dx = 1

nF Se

∫ t

0
I(τ )dτ. (5)

To our knowledge, the nonlinear model (1)–(2), interesting also from the point of
view nonlocal inverse/optimal control problems, still is not neither analyzed math-
ematically, nor solved numerically. The only similarity solution of this problem is
studied in [11–13]. Note that for the constant diffusion coefficient one special case of
the problem (1)–(2) is considered in [14].

In this article we study the nonlinear mathematical model (1)–(2) related to ion
transport in a polymeric medium under the influence of the electric field. Our study
is aimed to estimate relationship between the linear and nonlinear models, and find
out similarities and differences for these models. The presented results also show the
degree of applicability of classical linear models.

In the next section the describe some important physico-chemical and mathematical
aspects of the nonlinear model is derived. In Sect. 3 a method of reducing of the iden-
tification problem (8) to the initial-boundary value problem for nonlinear parabolic
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equation is derived. An effective numerical algorithm for this problem is derived in
Sect. 4. The comparative analysis of the linear and nonlinear models for ion transport
problem is presented the Sect. 5. The final Sect. 6 contains some conclusions.

2 Some important physico-chemical and mathematical aspects of the nonlinear
model

Although the mathematical model of the nonlinear ion transport problem is given in
[10], for completeness, we briefly discuss here some distinguished features of the
scaled model (1)–(2). The general background of the physico-chemical aspects of the
problem can be found in [3,15].

Let x ≥ 0 and t ≥ 0 are the scaled space and time variables. To describe a stan-
dard experiment, we assume that there is an electrode at x = 0, and a polymeric
medium containing mobile ions and electroactive species extending from the elec-
trode to x = ∞. It is assumed that the electroactive species are in oxidized form
before the time t = 0. At t = 0 a potential E is introduced at the electrode. This
causes a fraction of the oxidized species at the surface of the electrode to be reduced.
We denote by u = u(x, t), D > 0 and c > 0, the scaled concentration, diffusion and
convection of the reduced species. As oxidized species are reduced at the surface of
the electrode, its concentration decreases, and the concentration u = u(x, t) of the
reduced species at the electrode increases. As a result there arises two diffusion pro-
cesses: oxidized species diffuse in toward x = 0, and the reduced species, out into the
medium. Therefore ion transport here can be regarded as a superposition of diffusion,
which is the random motion of small particles immerse in the medium, migration,
which is a motion under the influence of an electric field, and convection, which is a
hydrodynamic flow. Exchange of electrons between the surface of the electrode and
electroactive species in the time t > 0 gives rise to the current response I = I(t),
which is related to the concentration of reduced species by the balance equation (5).

Considering the mathematical model (1)–(2) of the identification problem we will
only assume that the following relationship zr Dr = zo Do holds between the valences
and diffusivities Dr and Do of the reduced and oxidizes species. Note that the valences
zr , zo are assumed to be integers of the same sign, and zr �= −1, zo �= 1, since
one electron must be gained in reduction. In practice, −4 < zr < zo ≤ −1 and
1 < zr < zo ≤ 3. Within the above assumption the values of valences and the
diffusivity ratio κ := Dr/Do are given in Table 1.

Under this assumption the second nonlinear term h(u)x in the parabolic equation
(1) becomes h(u)x := u/zr . Hence the functions g(u) and h(u), defined by (3), have
the following forms:

Table 1 The values of valences
and the diffusivity ratio

zo −1 −2 −3 2 3
zr −2 −3 −4 1 2

κ := Dr /Do 1/2 2/3 3/4 2 3/2
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g(u) := 1 +
(

zr

zo
− 1

)

u, h(u) := 1

zr
u. (6)

Although the assumption zr Dr = zo Do makes some restrictions, it still permits one
to analyze the nonlinear model (1)–(2) for real class of materials.

Further, experimental and theoretical results show that [10] for a fixed t ∈ (0,∞)

the function u(x, t) and its partial derivative ux (x, t) decreases rapidly to zero, as
x → ∞, i.e.

u(1, t) = ux (1, t) = 0, t > 0. (7)

Moreover, the values of the function u(x, t) are in [0, 1], i.e. 0 ≤ u(x, t) ≤ 1,
∀x > 0, t > 0.

Taking into account the above properties, the nonlinear model (1)–(2) can be refor-
mulated in the bounded parabolic domain �T := (0, l) × (0, T ] as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ut = ((1 + (1/κ − 1)u)ux )x + 1
zr

q ′(t)ux , (x, t) ∈ �T ,

u(x, 0) = 0, x ∈ (0, 1),

u(0, t) = 1, ux (0, t) = 0, t > 0,

q(t) = ∫ ∞
0 u(x, t)dx, t ≥ 0.

(8)

In sequel this model will be considered as a basic nonlinear model.

3 Reducing of the identification problem (8) to the nonlinear initial-boundary
value problem

In this section we are going to reduce the identification problem (8) to the initial-
boundary value problem for nonlinear parabolic equation, eliminating the nonlocal
additional condition (2).

Differentiating the both sides of (2) and using then the parabolic equation (8) we
get:

q ′(t) =
∫ l

0
(g(u)ux )x dx + 1

zr
q ′(t)

∫ l

0
ux dx .

Integrating the right hand side terms yields:

q ′(t) = g(u(l, t))ux (l, t) − g(u(0, t))ux (0, t) − 1

zr
q ′(t)[u(l, t) − u(0, t)].

Using here the conditions u(l, t) = ux (l, t) = 0, also, g(u(0, t)) = g(1) = 1/κ ,
we get

q ′(t) = − 1

κ
ux (0, t) − 1

zr
q ′(t).
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Therefore

q ′(t) = − zr

(1 + zr )κ
ux (0, t), (9)

and

q(t) = − zr

(1 + zr )κ

∫ t

0
ux (0, τ )dτ, t ∈ [0, T ]. (10)

Note that this approach has also been used in [10] to estimate the derivatives ux and
uxx , and founders on some difficulties. We will use this approach to reduce the iden-
tification problem (12)–(13) eliminating the coefficient q(t), in order to construct the
numerical algorithm. Further this approach will be used also to formulate a fixed-point
principle.

Substituting (9) in the parabolic equation (8) we obtain

⎧
⎨

⎩

ut = (g(u)ux )x − 1
(1+zr )κ

ux (0, t)ux , (x, t) ∈ �T ;
u(x, 0) = 0, x ∈ (0, l);
u(0, t) = 1, ux (l, t) = 0, t ∈ (0, T ].

(11)

Therefore, the nonlinear identification problem (8) is reduced to the initial-bound-
ary value problem (11) for the strongly nonlinear parabolic equation ut = (g(u)ux )x −
(1/(1 + zr )κ)ux (0, t)ux . This problem does not contain the unknown function q(t).
The main distinguished feature of this approach is that the problem of solving the
identification problem (8) is separated into the two subproblem: solving the nonlin-
ear parabolic problem (11) and finding the unknown function q(t) by the integration
formula (2).

Formula (10) shows that the scaled total charge q(t) can also be expressed the total
flux (1/κ)ux (0, t) at the left boundary x = 0, over the time [0, t]. This, with the
balance equation (5) means that, the current response I(t) can me measured via the
flux at the left boundary x = 0:

I(t) = − nF Seu0

(1 + zr )κ
ux (0, t).

4 The finite-difference approximation and the iteration algorithm

We derive here an iteration algorithm for the reduced problem (11), using an implicit
finite difference scheme for nonlinear parabolic equations [16]. In the presented iter-
ation algorithm, the values of the coefficients in the diffusion and migration terms in
the nonlinear parabolic equation is be taken from the previous iteration. This mean
that the nonlinear problem (11) is linearized as follows:
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⎧
⎪⎨

⎪⎩

u(n)
t = (g(u(n−1))u(n)

x )x − 1
(1+zr )κ

u(n−1)
x (0, t)u(n)

x , (x, t) ∈ �T ;
u(n)(x, 0) = 0, x ∈ (0, l);
u(n)(0, t) = 1, u(n)

x (l, t) = 0, t ∈ (0, T ],
(12)

where the parameter n = 1, 2, 3, . . . shows the number of iterations.
To approximate the linearized problem (12), we define the uniform space and time

meshes wh = xi ∈ (0, l] : xi = ihx ; hx = l/N , wτ = t j ∈ (0, T ] : t j = jτ ; ht =
T/M , and use the standard finite difference approximations [16]

ux,i j := ui+1, j − ui, j

hx
, ut,i j := ui, j+1 − ui, j

ht
, ui, j := u(xi , t j ), i = 1, N ,

j = 1, M

of the partial derivatives ∂u/∂x , ∂u/∂t . Here the constants hx and ht are the mesh
steps.

For the numerical solution of the linearized problem (12) the following implicit
finite difference scheme is used [16]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(n)
i, j+1−ui, j

ht
− 1

hx

[

g
(

u(n−1)
i+1/2, j

) u(n)
i+1, j+1−u(n)

i, j+1
hx

− g
(

u(n−1)
i−1/2, j

) u(n)
i, j+1−u(n)

i−1, j+1
hx

]

+ zr
(1+zr )κ

u(n−1)
2, j+1−u(n−1)

1, j+1
hx

u(n)
i+1, j+1−u(n)

i−1, j+1
2hx

= 0, i = 1, N − 1, j = 2, M;

ui,1 = 0, i = 1, N

u1, j = 1,
uN , j+1−uN−1, j+1

hx
= 0, j = 2, M .

(13)

To analyze the convergence and accuracy of the discrete model (13) consider the
following test example.

The analytical solution of the reduced problem

⎧
⎨

⎩

ut = (g(u)ux )x − (1/(1 + zr )κ) ux (0, t)ux + F(x, t), (x, t) ∈ �T ;
u(x, 0) = 0, x ∈ (0, l);
u(0, t) = t, ux (l, t) = 0, t ∈ (0, T ],

(14)

with non-homogeneous source term

F(x, t) = cos(πx) −
(

1

κ
− 1

)

π2t2 sin2(πx)

+
[

1 +
(

1

κ
− 1

)

t cos(πx)

]

π2t cos(πx),

is the function u(x, t) = t cos(πx). Note that here the Dirichlet data in the boundary
condition u(0, t) = t depends on time.
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Table 2 Absolute sup-norm
errors for different values of
valences

zo zr Abs. error

−2 −3 4.5 × 10−2

−3 −4 2.9 × 10−2

2 1 3.6 × 10−2

3 2 2.6 × 10−2

The iteration scheme (13) is applied to the nonlinear problem (11) by using the
mesh size 40 × 40 in the domain (0, 1) × (0, 1) which means hx = ht = 2.5 × 10−2.
For different values of the valences zo and zr the absolute sup-norm difference ε

(n)
h ,

between the numerical solution u(n)
h and the function u(x, t) = t cos(πx) are shown

in Table 2. The number of iterations for this accuracy is n = 4. As it is seen from the
table, in all cases the absolute sup-norm error ε

(n)
h = max(i j) |u − u(n)

h | is of the order

ε
(n)
h = O(10−2).

These results show that the accuracy of discrete model (13) is high enough.
To study the behavior of the concentration function u(x, t) with respect to the time

t > 0 and space x > 0 variables, the computational experiments were done for differ-
ent admissible values zo and zr of the valences of the oxidized and reduced species.
For this aim the nonlinear problem (11) was solved by the iteration algorithm (13),
with the functions g(u) and h(u), given by (6). For the values 〈zo, zr 〉 = 〈−2, − 3〉;
〈−3, − 4〉; 〈2, 1〉; 〈3, 2〉 of valences the numerical solutions u(n)

h are plotted in

Fig. 1. As shown in all figures, for fixed time t > 0 the solution u(n)
h (x, t) decreases

rapidly and monotonically on the space interval [0, 1]. Further, in all cases u(x, t) is
a smooth function. These results agree with the theoretical results obtained in [10],
as well as with the experimental results described in [3,17]. Figure 1 also show that
the behavior of the concentration function u(x, t) with respect to the time variable
t > 0 is different. Specifically, for fixed space variable x > 0, the solution u(n)

h (x, t)
increases slowly and monotonically from 0 to 1 in the time interval [0, 1].

5 Comparative analysis between linear and nonlinear models

To derive the comparative analysis between linear models and the above nonlinear
model for ion transport, first of all one need to find an upper and lower estimates
for the nonlinear model (11) via the linear models. Without loss of generality, let us
consider the case 〈zr , zo〉 = 〈−1,−2〉. Then κ = zo/zr = 1/2, and the coefficients
g(u) and h(u), given by (6), have the following forms:

g(u) = 1 + u, h(u) = −1

2
.

Hence, the reduced parabolic equation (11) has the following form

ut = ((1 + u)ux )x + 2ux (0, t)ux , (x, t) ∈ �T . (15)
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Fig. 1 The numerical solution u(n)
h of the nonlinear problem (11) different values zo and zo of the valences

of the oxidized and reduced species

Since the function u(x, t) is a decreasing one with respect to the variables x and t , the
function ν(t) = −2ux (0, t) > 0 is a positive one. Further, 0 ≤ u(x, t) ≤ 1 implies
D∗ = 1 ≤ u(x, t) ≤ 2 = D∗. Hence the linear models

⎧
⎨

⎩

vt = D∗vxx − ν(t)vx , (x, t) ∈ �T ,

v(x, 0) = 0, x ∈ (0, l),
v(0, t) = 1, vx (l, t) = 0, t ∈ (0, T ];

(16)

and

⎧
⎨

⎩

wt = D∗wxx − ν(t)wx , (x, t) ∈ �T ,

w(x, 0) = 0, x ∈ (0, l),
w(0, t) = 1, wx (l, t) = 0, t ∈ (0, T ],

(17)

with D∗ = 1 and D∗ = 2, can be considered as the upper and lower linear models,
respectively, for the nonlinear model (11), when 〈zr , zo〉 = 〈−1,−2〉. For ν(t) = 0
these models represent pure diffusive models.
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On the other hand the analytical formula (see, [8], formula (5))

IC (t) = nF Seu0

zr

√
D

π t
(18)

for the classical Cottrellian IC holds for the pure diffusive model in the half-space
domain �+ = (x, t) ∈ R2 : x > 0, t > 0. This means that the analytical formula

q(t) = 2

√
D

π
t (19)

for the scaled total charge holds for the linear model

⎧
⎨

⎩

ut = Duxx − ν(t)ux , (x, t) ∈ �+,

w(x, 0) = 0, x > 0,

w(0, t) = 1, t > 0,

(20)

given on the half-space domain �+ = (x, t) ∈ R2 : x > 0, t > 0, but not for the
linear model (16) (or (17)), with ν(t) = 0, given on the bounded domain �T =
(x, t) ∈ R2 : x ∈ (0, 1) > 0, t ∈ (0, T ]. Hence, to derive the comparative analysis,
first of all, one needs to compare the values the scaled total charge q(t), obtained by
the above linear models, in the case of pure diffusivity (with ν(t) = 0). For this aim
the linear problems (16) and (17), with D∗ = 1, D∗ = 2, and ν(t) = 0, were solved
numerically, and the scaled total charge q(t) was calculated by the formula (2). Then,
for the same values D∗ = 1 and D∗ = 2 of the diffusion coefficient the scaled total
charge q(t) was calculated by the formula (19), which corresponds to the linear model
(20), with ν(t) = 0. The results are plotted in Fig. 2. These results show that for a small
time scales the values of the scaled total charge q(t) obtained by the linear models,
given in half-space domain �+ and the bounded domain �T , are close. However, for
increasing values of the time t > 0 these values become highly different. Hence, even
in the case of pure diffusion linear model, the classical Cottrellian IC (t) can only
qualitatively reflect the current response. This means that for real physical problems
one needs to consider these models in the finite domain �T .

To compare the upper and lower linear models (16)–(17) with the corresponding
nonlinear model, problem (11), with the nonlinear equation ut = ((1 + u)ux )x , was
solved by the above iteration algorithm, for the given data 〈zr , zo〉 = 〈−1,−2〉. The
scaled total charge q(t), corresponding to the nonlinear model is plotted by the dashed-
line (- - -) in Fig. 2. It is seen that the values of the function q(t) are between the values
of the scaled total charge obtained by the upper and lower linear models (16)–(17).
This shows that the linear models can also be used as an upper and lower estimations
for the total charge, as well as for the current response.

The second series of computational experiments is related to the behavior of the
scaled total charge q(t) depending on the values 〈zo, zr 〉 of valences of the oxidized
and reduced species. The nonlinear problem (11) with the given in (6) coefficients is
solved for the given in Table 2 negative and positive values of valences. The corre-
sponding total charges, calculated by formula (2), are plotted in Fig. 3. For the negative
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Fig. 2 The scaled total charge q(t) corresponding to the linear pure diffusive models (16), (17), (20), and
obtained from the nonlinear model (11) with 〈zr , zo〉 = 〈−1,−2〉
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Fig. 3 The scaled total charge q(t) corresponding to the linear pure diffusive upper and lower models
(16)–(17), and obtained from the nonlinear model (11) for the admissible values of valences of the oxidized
and reduced species

three values (〈zo, zr 〉 = 〈−1, − 2〉, 〈−2, − 3〉; 〈−3, − 4〉) of valences the diffusion
coefficient g(u) is estimated as follows: D∗ = 1 ≤ g(u) ≤ D∗ = 2. Hence linear
models (16)–(17) with these diffusivity coefficients D∗ = 1 and D∗ = 2 play rule
of the upper and lower ones. Figure 3 clearly shows that in all three cases the val-
ues of the scaled total charge q(t) are between the values of the scaled total charge
obtained by the upper and lower linear models (16)–(17). The same situation can be
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observed for two positive values 〈zo, zr 〉 = 〈2, 1〉; 〈3, 2〉 of valences. In this case
D∗ = 0.5 ≤ g(u) ≤ D∗ = 1.5.

6 Conclusions

In this article, we performed a comparative analysis of the linear and nonlinear math-
ematical models related to ion transport. For this aim we reduce the identification
problem (1)–(2) to the initial-boundary value problem for nonlinear parabolic equa-
tion, and propose an effective iteration algorithm for the numerical solution of this
problem. Our first comparative analysis between the existing linear models show the
deviation of the classical Cottrellian IC (t) from the real current response. The sec-
ond comparative analysis between the linear and nonlinear models show how can be
obtained upper and lower bounds for the scaled total charge, corresponding to the
nonlinear model, via the appropriate upper and lower linear models.
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